United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS METHOD OF CONSTRUCTION OF TRANSIENT FROM A CYCLE OF NEURONAL RECURRENCE EQUATION

نویسندگان

  • René Ndoundam
  • Maurice Tchuente
چکیده

We study the sequences generated by neuronal recurrence equations of the form x(n) = 1[ ∑k j=1 ajx(n − j) − θ], where k is the size of memory (k represents the number of previous states x(n − 1), x(n − 2), . . . , x(n − k) which intervene in the calculation of x(n)). We are interested in the number of steps (transient length) from an initial configuration to the cycle. We propose a method of construction of transient from a cycle generated by neuronal recurrence equation. We apply this method to build a neuronal recurrence equation with inhibitory memory of size (s+1)6m, whose dynamics contains an evolution of transient length (s+1)× (5m+2+ lcm(p0, p1, . . . , ps−1, 3m − 1)) and a cycle of length (s + 1) × lcm(p0, p1, . . . , ps−1, 2m + 1) where lcm denotes the least common multiple, and p0, p1, . . . , ps−1 are prime numbers lying between 2m and 3m. MIRAMARE – TRIESTE November 2005 Regular Associate of ICTP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NUMERICAL SOLUTION OF DISCRETE-TIME ALGEBRAIC RICCATI EQUATION

In this paper, we present a naturally numerical method for finding the maximal hermitian solution X+ of the Discrete-Time Algebraic Riccati Equation (DTARE) based on the convergence of a monotone sequence of hermitian matrices. MIRAMARE TRIESTE August 1999 E-mail: [email protected] 227 Nguyen Van Cu, Q5, HCMC, Vietnam.

متن کامل

United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SOME RESULTS ON THE ASYMPTOTIC BEHAVIOUR OF HYPERBOLIC SINGULAR PERTURBATIONS PROBLEMS

Anisotropic singular perturbations of linear hyperbolic problems are considered. A description of the asymptotic behaviour of the solution as ε → 0 is given. In the case of cylindrical domains, we improve the rate of convergence in regions far from the lateral boundary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006